如何通过 SINAMICS Link 实现 CU320 间的通讯

How to Realize SINAMICS Link Communication between CU320

Getting Started

Edition (2011年05月)

摘要 本文介绍了如何通过 SINAMICS Link 实现 CU320 间的通讯

关键词 SINAMICS Link, CU320,通讯

Key Words SINAMICS Link , CU320, Communication

1 录

1.	SINAMICS Link的基本原则	4
2.	拓扑结构	4
3.	配置及调试	5
4.	示例	6

1. SINAMICS Link 的基本原则

SINAMICS Link 可以实现几个控制单元CU320-2 DP 之间的直接数据交换,但必须安装 CBE20选件板。可实现下述应用:

- 多个驱动装置的转矩分配
- 多个驱动装置的设定值层叠
- 物料线的驱动耦合的负荷分配
- 整流单元的主/从控制功能
- SINAMICS DC-MASTER 及 SINAMICS S120的连接

发送及接收数据

常用的节点包括带有CU的驱动单元及连接的驱动对象(DOs)。SINAMICS Link 的报文为16个固定的过程数据空间(PZD),每个PZD 为一个字节长度。不需要的部分填零。

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SINAMICS Link															

每个节点发送一个16个PZD的报文。一个驱动对象从每个连接的其它D0处最多可以接收16个 PZD。可接收或发送单字和双字。双字需要2个连续的PZDs。

传送时间

当使用SINAMICS Link (对于一个控制周期,最大0.5ms;总线周期2.0 ms)时,传送时间可以为3.0 ms。

2. 拓扑结构

对于SINAMICS Link, 只允许使用下述的线性拓扑结构:

IA&DT&BT Service & Support

- 不同节点的编号输入到参数p8836[0...63]中。
- 编号要连续,不允许有间隙。
- 同步主的通讯链接节点编号被自动分配为1。
- 当配置通讯时,特殊节点的站名称 (SINAMICSxLINKx001 …SINAMICSxLINKx064) 及 IP 地址 (169.254.123.001 … 169.254.123.064) 通过分配的节点编号被自动设置并 且不能被修改。
- 对于CBE20 连接,端口的使用必须按照图1所示。这意味着n节点的 Port 2 (P2) 总是 与n+1节点的Port 1 (P1)相连接。

3. 配置及调试

调试

当调试时,对于控制单元应进行如下设置:

- 设置参数 p8835 = 3 (SINAMICS Link).
- 使用参数 p8836,分配节点的节点编号(第一个控制单元总是被分配为编号1)。节点编 号为0表示 SINAMICS Link 被关闭。
- 执行掉电再上电。

发送数据

发送数据过程如下:

- 在参数 p2051[x]中,对于每个驱动对象,指定被传送的数据(PZDs)。双字传送必须在 p2061[x] 中指定。
- 在参数 p8871中,对于每个驱动对象,分配发送的参数到它自己节点的发送槽中。双字(如PZD 2+3)被分配两个连续传送槽,例如: p8871[1] = 2 , p8871[2] = 3。

接收数据

数据接收过程如下:

注意:

接收数据的第一个字必须为控制字,其bit 10 必须为1。如果不是此情况,必须设置p2037 = 2不激活bit 10的评估。

- 接收的数据被存贮在参数 r2050[x]/r2060[x]中。
- 被读取的相关PZD的节点地址被定义在参数p8872[0 … 15]中 (0 = 不读取)。

● 在参数 p8870[0 … 15]中,定义从发送报文中读取哪个PZD数据并被存贮在他自已的 服务槽中,r2050 用于 PZD 或 r2060 用于双字 PZD (0 = 无选择的 PZD)。

注意:

对于双字,必须读取2个PZD;例如:读一个 32-bit 设定值,位于节点5的PZD 2+3需设置: p8872[1] = 5, p8870[1]= 2, p8872[2] = 5, p8870[2] = 3。

激活

激活 SINAMICS Link 连接,必须对所有的节点执行掉电后再上电操作。不执行掉电再上电时,p2051[x]/2061[x]的分配及读取参数 r2050[x]/2060[x]的链接可被改变分配。

4. 示例

任务:

对2个节点配置 SINAMICS Link并传送下述值:

- 从节点1到节点2传送的数据
 - r0898 CO/BO: 驱动对象1的控制字(1 PZD), 示例中的 PZD 1
 - r0079 CO: 总的转矩设定值(2 PZD), 示例中的PZD 2
 - r1150 CO: 斜坡函数发生器输出的速度设定值(2 PZD), 示例中的PZD 3
- 从节点2到节点1传送的数据
 - r0899 C0/B0: 驱动对象1的状态字(1 PZD),示例中的 PZD 1

设置步骤:

- (1). 对于所有节点,设置 SINAMICS Link 模式: p8835 = 3
- (2). 对两个设备分配节点号:
 - 节点1: p8836 = 1
 - 节点2: p8836 = 2
- (3). 定义发送数据(节点1)
 - 对于节点1, 驱动对象为矢量控制, 定义传送的PZD:
 - p2051.0 = Drive1:r0898,
 - p2061.1 = Drive1:r0079,
 - p2061.3 = Drive1:r1150
 - 分配此 PZD 至自己D0的传送缓冲区(p8871):

p8871.0 = 1,

- p8871.1 = 2,
- p8871.2 = 3,
- p8871.3 = 4,
- p8871.4 = 5
- (4). 定义发送数据(节点2)
 - 对于节点2, 驱动对象为矢量控制, 定义传送的PZD:
 - p2051.0 = Drive2:r0899
 - 分配此 PZD 1 至发送缓冲区(p8871):

p8871.0 = 1

- (5). 定义接收数据(节点1)
 - 定义接收缓冲区0,填入来自节点2的数据:

p8872.0 = 2

- 定义保存在此缓冲区中的节点2的 PZD 1: p8870.0 = 1
- r2050.0 显示节点2PZD 1的值。
- (6). 定义接收数据(节点2)
 - 定义接收缓冲区0…4,填入来自节点1的数据:
 - p8872.0 = 1,
 - p8872.1 = 1,
 - p8872.2 = 1,
 - p8872.3 = 1,
 - p8872.4 = 1
 - 定义保存在这些缓冲区中的节点1的 PZD 1…PZD 5:
 - p8870.0 = 1,
 - p8870.1 = 2,
 - p8870.2 = 3,
 - p8870.3 = 4,
 - p8870.4 = 5
 - r2050.0, r2060.1 及r2060.3 中显示来自节点1的PZD 1, PZD2+3 及 PZD4+5的

值。

(7). 对于所有的节点,需执行掉电后再上电的操作以激活SINAMICS Link连接。

如果您对该文档有任何建议,请将您的宝贵建议提交至<u>下载中心留言板</u>。 该文档的文档编号: A0556

附录一推荐网址

驱动技术

西门子(中国)有限公司 工业自动化与驱动技术与楼宇科技集团 客户服务与支持中心 网站首页:<u>www.4008104288.com.cn</u> 驱动技术 **下载中心**: <u>http://www.ad.siemens.com.cn/download/DocList.aspx?TypeId=0&CatFirst=85</u> 驱动技术 **全球技术资源**:<u>http://support.automation.siemens.com/CN/view/zh/10803928/130000</u> "**找答案**"驱动技术版区:<u>http://www.ad.siemens.com.cn/service/answer/category.asp?cid=1038</u>

注意事项

应用示例与所示电路、设备及任何可能结果没有必然联系,并不完全相关。应用示例不表示客户的具体解决方案。它们仅对典型应用提供支持。用户负责确保所述产品的正确使用。这些应用示例不能免除用户在确保安全、专业使用、安装、操作和维护设备方面的责任。当使用这些应用示例时,应意识到西门子不对在所述责任条款范围之外的任何损坏/索赔承担责任。我们保留随时修改这些应用示例的权利,恕不另行通知。如果这些应用示例与其它西门子出版物(例如,目录)给出的建议不同,则以其它文档的内容为准。

声明

我们已核对过本手册的内容与所描述的硬件和软件相符。由于差错难以完全避免,我们不能保 证完全一致。我们会经常对手册中的数据进行检查,并在后续的版本中进行必要的更正。欢迎 您提出宝贵意见。

版权©西门子(中国)有限公司 2001-2011 版权保留

复制、传播或者使用该文件或文件内容必须经过权利人书面明确同意。侵权者将承担权利人的 全部损失。权利人保留一切权利,包括复制、发行,以及改编、汇编的权利。

西门子(中国)有限公司